Ixzi.ru

Фракции белков плазмы. Белок плазмы крови и его фракции

БЕЛКИ ПЛАЗМЫ КРОВИ. ФУНКЦИИ ОСНОВНЫХ ФРАКЦИЙ

В плазме крови человека содержится более 100 различных белков. Большая часть белковплазмы синтезируется в печени, исключение – иммуноглобулины и белково-пептидные гормоны. Функции белков плазмы крови очень разнообразны. Белки создают онкотическое давление и тем самым поддерживают постоянный объём крови, т.е. связывают воду и удерживают её в кровеносном русле. Белки обеспечивают вязкость крови. От вязкости зависят скорость кровотока, артериальное и венозное давление и другие показатели ССС. Белки, совместно с гидрокарбонатной и фосфатной буферными системами, поддерживают КЩР (рН 7,34–7,36). В плазме содержатся белки свёртывающей (фибриноген) и противосвёртывающей систем (антитромбин). В плазме содержатся транспортные белки: неспецифические (альбумин) и специфические (трансферрин). В плазме находятся антипротеазы, защищающие от разрушения клетки крови и сосуды. Иммуноглобулины, система комплемента и другие белки иммунной системы обеспечивают гуморальный иммунитет. Белками плазмы являются компоненты кининовой и ангиотензиновой систем. Брадикинин расширяет сосуды и снижает АД, ангиотензин суживает их и повышает АД. Питательная функция белков плазмы важна при голодании и некоторых заболеваниях.

Белки на фракции можно разделить несколькими способами. Например, по подвижности при электрофорезе их можно грубо разделить на 5 фракций: альбумин,a1,a2-, b- и g-глобулины.Каждая фракция представляет собой смесь индивидуальных белков с одинаковым зарядом.

Альбумины синтезируются гепатоцитами печени. Среди белков плазмы в количественном отношении это самая большая фракция (42 г/л). Это простые белки, которые выполняют большинство общих функций белков плазмы крови. Они обеспечивают вязкость крови, онкотическое давление, так как имеют меньшую М и их много, участвуют в регуляции КЩР, так как содержат больше заряженных аминокислот. Альбумины выполняют транспортную функцию для липофильных веществ, транспортируют жирные длинноцепочечные кислоты (СЖК), билирубин, некоторые гормоны, витамины, лекарства. Кроме того альбумин связывает ионы Са 2+ и Мg 2+ . Альбумины являются резервом аминокислот для глюконеогенеза и выполняют питательную функцию при голодании.

a1-, a2-, b-глобулины синтезируются клетками РЭС, g-глобулины синтезируются В-лимфоцитами – 90%, купферовскими клетками – 10 %.

a1-глобулины – фракция, в состав которой входят транспортные белки (тироксинсвязывающий), белки острой фазы (a1-антипептидазы), апобелки ЛПВП, протромбин и др.

a2-глобулины – фракция, в составе которой тоже имеется транспортный белок (церулоплазмин), белок острой фазы a2-макроглобулин, антитромбин и др.

b-глобулины – фракция, в составе которой находятся апобелки ЛПНП, фибриноген, транскобаламин и др.

g-глобулины – фракция, в состав которой входят антитела (иммуноглобулины).

В норме в плазме крови концентрация общего белка составляет 63 – 83 г/л. Гиперпротеинемия – повышенная концентрация белка чаще бывает относительная при обезвоживании организма (понос, рвота, ожоги). Абсолютнаягиперпротеинемия бывает при хронических воспалительных заболеваниях (g-глобулинемия). Гиперпротеинемия обычно это гиперглобулинемия. Гипопротеинемия – пониженная концентрация белка, чаще всего это гипоальбуминемия.Диспротеинемии возникают при нарушении соотношения между фракциями при общем количестве белка в норме. С помощью белкового спектра плазмы крови можно, например, дифференцировать острое воспаление и хроническое. При остром воспалении снижены альбумины, а повышены a1-и a2 –глобулины. При хроническом воспалении, кроме того повышаются g-глобулины. При патологии печени снижены альбумины, а повышены b- и g-глобулины.

Индивидуальные белки плазмы крови представляют собой 4 основные группы: 1) иммуноглобулины, 2) транспортные белки, 3) ферменты, 4) белки острой фазы.

Иммуноглобулины обеспечивают гуморальный иммунитет, нейтрализуют бактерии, вирусы, грибки и др. Известно 5 классов иммуноглобулинов. IgG – это поздние антитела, обеспечивают вторичный иммунный ответ. Их больше всех других (75%). IgA – защищают слизистые оболочки, присутствуют в слюне, секретах дыхательных путей, молоке, пищеварительных соках.IgM – это ранние антитела первичного иммунного ответа.IgD – это рецепторы В-лимфоцитов, других функций у них не обнаружено. IgE – это антитела, уровень которых повышается при аллергических реакциях (бронхиальная астма, крапивница) и паразитарных инфекциях.

Транспортные белки, например, церулоплазмин, транспортирует ионы меди. Наследственный дефект этого белка приводит к заболеванию – гепатолентикулярная дегенерация (болезнь Вильсона-Коновалова). Для лечения назначают комплексоны (ЭДТА), которые связывают ионы меди. Трансферрин служит для переноса ионов железа, ретинолсвязывающий белок транспортирует витамин А,тироксинсвязывающийбелок для транспорта йодтиронинов и другие, необходимые для переноса гидрофобных соединений.

Ферменты плазмы можно разделить на функциональные и нефункциональные Функциональные ферменты синтезируются в печени, поступают в плазму и выполняют различные функции. Это холинэстераза, ферменты свертывающей и противосвертывающей систем, ферменты кининовой системы (калликреин), ферменты ангиотензиновой системы (ангиотензинпревращающий – АПФ). Нефункциональные или клеточные ферменты в норме в плазме содержатся в следовых количествах, они появляются в результате нормального обновления клеток. Нефункциональные ферменты попадают в плазму при разрушении клеток в результате воспаления или некроза. Такие ферменты называются индикаторными, так как если они являются тканеспецифичными, их используют в энзимодиагностике. Для энзимодиагностики инфаркта миокарда полезны определение активности АсАТ > АлАТ, ЛДГ1, креатинкиназы, (особенно изофермента МВ). При заболеваниях печени в плазме повышаются: АлАТ > АсАТ, ЛДГ5, ОКТ (орнитинкарбамоилтрансфераза), аргиназа. При остром панкреатите в плазме повышена активность других ферментов – панкреатической a-амилазы и липазы.

Белки острой фазы (гликопротеины) называют так потому, что в норме они в крови отсутствуют, либо присутствуют в следовых количествах. При патологии их концентрация многократно увеличивается. Например, С-реактивный белок, образует преципитаты с С-полисахаридами пневмококков, появляется при воспалении лёгких и других воспалительных заболеваниях, острых инфекциях. Кислыйa1-гликопротеин (орозомукоид) повышен при хронических и острых заболеваниях, отличается большим содержанием углеводов (42%). a1-антитрипсин, a2-макроглобулин, это ингибиторы пептидаз, которые защищают белки плазмы и сосудов от пептидаз, поступающих в кровь при лизисе клеток. Уровень a2-макроглобулина повышается при беременности, приеме эстрогенов. Наследственная недостаточность этих пептидаз способствует развитию некоторых заболеваний (эмфизема лёгких, цирроз). Гаптоглобин это белок, который образует комплексы с гемоглобином и предотвращает потери железа при гемолизе эритроцитов. Криоглобулинотличается тем, что может желатинироваться при снижении температуры. У здоровых людей криоглобулин не обнаруживается, появляется при нефрозе, лейкозах, миеломе и др.

Не нашли то, что искали? Воспользуйтесь поиском:

Параграф 89 белки и пептиды плазмы крови

Составитель текста – Анисимова Е.С..
Авторские права защищены (продавать текст нельзя). Курсив не зубрить.
Замечания можно присылать по почте: exam_bch@mail.ru
https://vk.com/bch_5

ПАРАГРАФ 89:
«Белки и пептиды плазмы крови»

О функциях глобулинов см. также п.39. О пептидах см. п. 56.

Содержание параграфа:
Пептиды плазмы.
Гемоглобин
Функциональные и нефункциональные белки плазмы.
Фракции белков плазмы крови.
Отклонения содержания белков плазмы от нормы.
Дис/протеин/емии.
Гипо/альбумин/емии.
Ф У Н К Ц И И белков плазмы.

К пептидам, которые есть в крови в норме, относятся
ангиотензин (8 аминоацилов) и ряд других белково-пептидных гормонов, в составе которых менее 100 аминоацилов:
инсулин (51 аминоацил), глюкагон (29 аминоацилов) и т.д.. Но свойствам инсулин является типичным белком.

Гемоглобин
не относится к белкам плазмы крови (БПК) –
в норме он находится внутри эритроцитов (п.121),
а в плазму попадает при их разрушении (при гемолизе);
выполнять функцию транспорта кислорода к клеткам гемоглобин вне эритроцитов не способен.

Читать еще:  Что показывает повышенный уровень гомоцистеина в крови

Функциональные и нефункциональные белки плазмы.

Существуют белки плазмы, которые должны находиться в плазме и выполнять в ней функции –
их называют функциональными белками плазмы,
их дефицит в плазме может привести к патологии
(например, дефицит некоторых факторов свертывания приводит к гемофилии).

Но в плазме бывают белки, которые не выполняют в плазме никаких функций, потому их называют нефункциональными;
нефункциональные белки попадают в плазму из клеток при разрушении клеток
(то есть нефункциональные белки плазмы в норме являются внутриклеточными).

Попадание в плазму некоторых нефункциональных белков опасно:
например, попадание в кровь трипсина при панкреатите
(п.62) вследствие разрушения ПЖЖ трипсином) приводит к развитию коллапса.

Некоторые нефункциональные белки используются для диагностики
повреждений тех органов, из которых они поступили в кровь
(т.к. присутствие внутриклеточного белка данного органа в крови – результат и признак повреждения органа):
например, повышенная активность креатин/киназы в крови
может указывать на инфаркт (см. и другие примеры энзимодиагностики).

Фракции белков плазмы крови.

Белки плазмы крови делятся на две фракции:
альбумины и глобулины.

Глобулины делятся на 4 подфракции: ;1, ;2, ;, ;.

Альбуминов больше, чем глобулинов (57% против 43%),
а среди глобулинов преобладают ;-глобулины.

К фракции ;-глобулинов относятся антитела;
антитела синтезируются зрелыми В-лимфоцитами
(которые называются плазмоцитами).

Белково-пептидные гормоны, находящиеся в плазме,
синтезируются и секретируются эндокринными клетками
(например, ТТГ – гипофизом).

Остальные белки плазмы синтезируются в печени
(поэтому при повреждении печени количество БПК может снижаться).

Отклонения содержания белков плазмы от нормы.

Нормальное количество БПК – 63-83 г/л (всего – около 200г).
Снижение [БПК] называется гипо/протеин/емией,
а повышение – гипер/протеин/емией.

И снижение, и увеличение концентрации белков плазмы крови
указывает на наличие патологии в организме.

Изменение концентрации белков плазмы крови
может быть обусловлено
1) как изменением количества БПК,
2) так и изменением содержания воды в сосудах.
Например, при обезвоживании организма количество воды в сосудах меньше нормы,
и в этом случае нормальное количество БПК может сопровождаться повышенной концентрацией БПК.
Далее речь идёт об изменениях концентраций белков в плазме при нормальном количестве воды в плазме.

При воспалениях и патологии печени [альбуминов] снижается
(повышение концентрации альбуминов называется гипо/альбумин/емией),
а [глобулинов] повышается
(повышение концентрации глобулинов называется гипер/глобулин/емией).

Сочетание снижения альбуминов и повышения глобулинов называется дис/протеин/емией.
При воспалениях увеличивается концентрация ; глобулинов (;1 и ;2),
а при патологии печени увеличивается концентрация ; и ; глобулинов.
При остром воспалении нет повышения концентрации ;-глобулинов,
а при хроническом воспалении концентрация ;-глобулинов увеличена.

Снижение концентрации альбуминов наблюдается
не только при воспалениях и патологии печени, но и в других ситуациях.

Причины гипо/альбумин/емий можно разделить на три группы:
1) обусловленные снижением синтеза альбуминов (печенью),
2) обусловленные выходом альбуминов из сосудов,
3) обусловленные повышенным разрушением альбуминов.

Синтез альбуминов снижается:
1.1) при патологии печени (печень является местом синтеза большинства БПК),
1.2) при воспалительных и лихорадочных состояниях,
1.3) при дефиците «сырья» для их синтеза – аминокислот.

Дефицит аминокислот бывает:
1) при голодании (общем или белковом) или
2) при нарушении усвоения аминокислот при патологии ЖКТ
(при дефиците ферментов при патологии ПЖЖ или кишечника
или при нарушении всасывания при патологии кишечника).

Потеря белков из сосудов бывает при:
1) при повышенной проницаемости сосудов,
2) при патологии ЖКТ и почек
В последнем случае белки оказываются в моче,
присутствие белков в моче называется протеинурией;
протеинурия – признак повреждения почек,
здоровые почки не пропускают белки плазмы в мочу,
за исключение панкреатической амилазы, которой в норме в крови нет – п.62.

Повышенное разрушение альбуминов бывает при активации тканевых пептидаз.

При голодании количество белков снижается потому, что
не из чего синтезировать белки
и потому что белки используются в качестве питания
(используются для глюконеогенеза – п.33).

Ф У Н К Ц И И белков плазмы крови.

Есть функции, которые выполняются всеми БПК,
а есть функции, которые выполняются только определенными белками.

О б щ и е функции БПК.

1. БПК создают онкотическое давление –

это означает, что БПК участвуют в задерживании воды в сосудах.
Другие вещества плазмы тоже участвуют в удерживании воды в сосудах,
то есть создают осмотическое давление.
Определение: онкотическое давление – это доля осмотического давления,
обусловленная белками плазмы крови.
Распределение воды между тканями и сосудами
зависит от содержания осмотически активных веществ
(то есть веществ, способных «притягивать» воду туда, где вещества находятся)
в тканях и в сосудах
(к числу осмотически активных веществ относятся белки, глюкоза, ионы):
если количество осмотически активных веществ в сосудах снижается,
то часть воды перемещается из сосудов в ткани – это приводит к отекам.
И, наоборот, при увеличении содержания осмотически активных веществ в сосудах
часть воды переходит их тканей в сосуды,
чтобы «растворять» там повышенное количество осмотически активных веществ.

При снижении количества БПК онкотическое давление снижается,
это приводит к тому, что увеличивается количество воды в тканях и возникают отеки.

2. Питательная функция белков плазмы крови.

БПК могут расщепляться до АК, которые поступают в клетки.
В клетках АК могут
1) использоваться для синтеза белков,
2) могут катаболизироваться и давать АТФ и тепло (при дефиците глюкозы и жирных кислот),
3) в печени могут превращаться в глюкозу (при гипогликемии, в печени).

Питание белками плазмы снижает их количество в крови,
приводит к гипо/протеин/емии,
проявляется отеками, функции белков плазмы крови снижаются.

3. Буферная функция.

Участие в регуляции рН
(в поддержании кислотно-щелочного равновесия, в [Н+]= [протонов]).

Регуляция рН имеет очень большое значение:
значительные отклонения от нормального рН крови (от слегка щелочного рН)
приводят к смерти (например, при плохо контролируемом сахарном диабете).

Белки плазмы крови способны
присоединять к себе Н+ (то есть быть акцепторами протонов – основаниями)
при избытке протонов (то есть при ацидозе) –
за счет наличия в белках радикалов, способных протонироваться:
это радикалы лизина, аргинина, гистидина (радикалы оснОвных АК).

Белки плазмы крови способны
быть источниками Н+ (то есть быть кислотами)
при дефиците Н+ (то есть при алкалозе) –
за счет наличия радикалов, способных быт источниками протонов (кислотами):
радикалы Глу и Асп с СООН группами.
Наряду с БПК существуют гемоглобиновый, фосфатный и бикарбонатный буферы (см. курс физиологии).

4. С БПК связана вязкость крови.
Чем больше [БПК], тем больше вязкость.

С п е ц и а л и з и р о в а н н ы е функции БПК.

5. Определенные белки плазмы крови участвуют в сворачивании крови –
эти БПК называют факторами свертывания крови.

Их дефицит приводит к снижению способности крови сворачиваться,
что угрожает смертью от потери крови.
При гемофилии
причиной дефицита факторов свертывания являются мутации генов
(гемофилия относится к первичным, врожденным протеинопатиям – п.57).
Причиной нарушения свертывания может быть
авитаминоз витамина К (приобретенная протеинопатия, вторичная).

Читать еще:  Капельницы для очищения крови от токсинов способы

6. Ряд БПК участвует в снижении свертываемости крови
(факторы противосвертывающей системы крови).
Дефицит факторов противосвёртывающей системы приводит к тромбозам.

Существуют белки плазмы, которые способны ингибировать протеазы
и тем самым спасают организм от разрушения его белков протеазами.

Ингибиторы протеазы называются анти/протеазами.
Примеры антипротеаз:
;1-антитрипсин = ;1-антипептидаза,
;2-макроглобулин.

Антитрипсин способен наряду с другими пептидазами ингибировать трипсин;
это важно при появлении трипсина в крови при панкреатите,
т.к. появление трипсина в крови приводит к коллапсу (см. п. 62).
Известно, что дефицит антипротеаз приводит к смерти
от цирроза и фиброза легких;
причиной дефицита антипротеаз являются мутации их генов.
Спасти человека в этом случае может пересадка ему печени человека с нормальными генами антипротеаз.

8. Белки острой фазы.

Концентрация в крови ряда белков плазмы крови
увеличивается при острых состояниях –
эти белки называют белками острой фазы.

Примеры белков острой фазы:
С-реактивный белок, фибриноген, антитрипсин, гаптоглобин (связывает гемоглобин при выходе гемоглобина из эритроцитов при гемолизе, это позволяет предотвратить потерю железа организмом).

9. Транспортная функция белков плазмы.

Основные транспортные белки плазмы – это альбумины.
Они связывают в плазме и транспортируют:
жирные кислоты (образующиеся при расщеплении жира в адипоцитах, в ЛПОНП и хиломикронах),
свободный билирубин (от клеток системы макрофагов к гепатоцитам, см. 118,
ионы,
лекарства (гидрофобные).

Транспортер железа называется трансферрином (он же транспортирует хром),
транспортер меди – церулоплазмином,
транспортер В12 (кобаламина) – транскобаламином,
транспортер Hb – гаптоглобином.

Есть специальные транспортеры для гидрофобных гормонов (например, для стероидов) и витаминов (А, Д).
Дефицит транспортных белков нарушает транспорт соответствующих веществ
и может привести к патологии.
Например, дефицит транспортеров витаминов
может привести к симптомам гиповитаминозов,
дефицит альбуминов:
– приводит к увеличению поступления свободного билирубина в клетки
(это нарушает состояние клеток и самочувствие) и
– требует снижения доз лекарств.

10. Участие в регуляции артериального давления:

Белки систем брадикинина и антиотензина
(пре/кинины, пре/калликреин, ангиотензиноген)
участвуют в регуляции артериального давления
(брадикинин снижает, ангиотензин увеличивает)
за счет влияния на тонус сосудов и объем плазмы крови.

Кроме этого, брадикинин увеличивает проницаемость сосудов
и вследствие этого способствует воспалительным, иммунным и аллергическим реакциям.
Ангиотензин влияет на водно-минеральный обмен:
способствует экскреции натрия, хлорида, воды и снижает экскрецию калия.
При этом сам ангиотензин является пептидом, а не белком.

11. Гуморальный иммунитет.

Антителами и белками системы комплемента обусловлен гуморальный иммунитет.
Антитела отвечают за распознавание антигенов,
связывают их и способствуют уничтожению антигенов иммунными клетками.

Белки системы комплемента участвуют в уничтожении опасных (например, бактериальных) клеток.
Антитела образуют фракцию ;-глобулинов, секретируются плазмоцитами. Дефицит антител снижает иммунитет.

12. Апобелки липопротеинов (п.49) иногда считаются белками плазмы крови
и относятся к фракции глобулинов.
Апобелки образуются в кишечнике, как и сами хиломикроны;
в плазме в хиломикроны могут поступать апобелки из других липопротеинов, синтезированные в печени.
Функция липопротеинов в норме – транспорт липидов:
жира, холестерина, фосфолипидов и витамина Е в ткани
и (для ЛПВП) очистка тканей от избытка холестерина и тем самым предотвращение атеросклероза.

Кроме белков, растворенных в плазме, есть белки, связанные с мембранами клеток эндотелия сосудов.
Они тоже выполняют в плазме важные функции. Например, липопротеин/липаза (см. п. 49-51).

белки плазмы крови белковые фракции крови норма

Белки плазмы крови белковые фракции крови норма

Ткани и органы. Кровь

Белки плазмы крови

Основную массу растворимых нелетучих веществ плазмы крови образуют белки. Их концентрация лежит в пределах 60-80 г/л; они составляют примерно 4% всех белков организма.

А. Белки плазмы крови

В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α 1 -, α 2 -, β- и γ-глобулины . Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины — только в присутствии солей.

В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов (см. рис. 273), гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови (см. рис. 283); фракция γ-глобулинов содержит антитела иммунной системы (см. рис. 289).

Образование и разрушение. Большинство белков плазмы синтезируется в клетках печени. Исключение составляют иммуноглобулины, которые продуцируются плазматическими клетками иммунной системы (см. рис. 287), и пептидные гормоны, секретируемые клетками эндокринных желез (см. рис. 371).

Кроме альбумина почти все белки плазмы являются гликопротеинами. Они включают олигосахариды, присоединенные к аминокислотным остаткам N- и О-гликозидными связями (см. с. 50). В качестве концевого остатка углеводной цепи часто выступает N-ацетилнейраминовая кислота (сиаловая кислота, см. с. 44). Если эта группа отщепляется нейраминидазой, ферментом находящимся в стенках кровеносных сосудов, на поверхности белка оказываются концевые остатки галактозы. Остатки галактозы асиалогликопротеинов (т. е. десиалированных белков) узнаются и связываются рецепторами галактозы на гепатоцитах. В печени эти «состарившиеся» белки плазмы удаляются путем эндоцитоза. Таким образом, олигосахариды на поверхности белка определяют время жизни белков плазмы, полупериод выведения (биохимический полупериод) которых составляет от нескольких дней до нескольких недель (см. рис. 179).

В здоровом организме концентрация белков плазмы поддерживается на постоянном уровне. Однако их концентрация изменяется при заболевании органов, участвующих в синтезе и катаболизме этих белков. Повреждение тканей посредством цитокинов (см. рис. 379) увеличивает образование белков острой фазы, к которым принадлежат С-реактивный белок, гаптоглобин, фибриноген, компонент С-З комплемента и некоторые другие.

Белки и другие заряженные макромолекулы можно разделять методами электрофореза (см. с. 84). Среди различных электрофоретических методов наиболее простым является электрофорез на носителе , особенно на ацетилцеллюлозной пленке. При этом сывороточные белки, которые из-за наличия избыточного отрицательного заряда движутся к аноду, разделяются на пять вышеупомянутых фракций. После разделения белки можно окрашивать с помощью красителей и денситометрически оценивать количества белков в полученных окрашенных полосах.

При определенных заболеваниях изменяются концентрации отдельных белков (так называемые диспротеинемии ).

Плазма крови человека в норме содержит более 100 видов белков. Примерно 90% всего белка крови составляют альбумины, иммуноглобулины, липопротеины, фибриноген, трансферрин; другие белки присутствуют в плазме в небольших количествах.

Синтез белков плазмы крови осуществляют:

  • печень — полностью синтезирует фибриноген и альбумины крови, большую часть α- и β-глобулинов,
  • клетки ретикулоэндотелиальной системы (РЭС) костного мозга и лимфатических узлов — часть β-глобулинов и γ-глобулины (иммуноглобулины).
Читать еще:  Цель анализа крови на кальцитонин и подготовка к нему

Существует довольно много различных методов разделения белков в зависимости от их некоторых качеств.

Состав и количество фракций белков в биологических жидкостях зависит от применяемого метода фракционирования:

  1. Осаждение
    • нейтральными солями (высаливание) — способность белков плазмы выпадать в осадок при воздействии на них растворов солей различных концентраций,
    • этиловым спиртом при низкой температуре;
  2. Электрофоретическое фракционирование — различают несколько типов электрофореза в зависимости от поддерживающей среды. В качестве поддерживающих сред используют бумагу, ацетатцеллюлозную пленку, агаровый, полиакриламидный, крахмальный гели. При проведении электрофореза необходимо учитывать факторы, влияющие на подвижность разделяемых веществ:
    • заряд (обычно зависит от pH), размеры и форма молекул веществ;
    • электрическое поле: скорость миграции ионов прямо пропорциональна силе тока, обусловленной переносом ионов буфера и образца, напряжению и обратно пропорциональна сопротивлению (зависит от типа и размеров носителя и ионной силы буфера);
    • тип буфера: состав, концентрация, pH, ионная сила. Ионная сила равна сумме n составляющих: сnzn 2 / 2, где сn — молярная концентрация n-ого иона, z — заряд этого иона;
    • носитель: учитывается его гидрофильность, адсорбция веществ на молекулах носителя, электроосмос, диффузия.
  3. Иммунологические методы — основаны на иммунных свойствах белковых фракций: иммуноэлектрофорез, электроиммунодиффузия, радиальная иммунодиффузия, радиоиммунный анализ;
  4. Седиментационный анализ — основан на различной зависимости скорости оседания белков от массы и величины их молекулы;
  5. Ионообменная, адсорбционная, распределительная, аффинная хроматография, гель-фильтрация.

Наиболее распространенным методом фракционирования является электрофорез, основанный на разной скорости движения белков в электрическом поле, в зависимости от величины заряда и молекулярной массы. Количество выделяемых фракций определяется условиями проведения электрофореза и качеством поддерживающей среды. Так, например, при электрофорезе на бумаге и пленках ацетата целлюлозы выделяют 5 фракций (альбумины, α1–, α2–, β– и γ–глобулины), в то время как в полиакриламидном геле — до 20 и более фракций. При использовании более совершенных методов (радиальная иммунодиффузия, иммуноэлектрофорез и других) в составе глобулиновых фракций выявляются многочисленные индивидуальные белки.

За основу классификации белков по фракциям принято разделение белков на бумаге. На протеинограмму оказывают влияние только те белки, концентрация которых достаточно высока.

В клинико-диагностических лабораториях наиболее распространены методы электрофореза на бумаге и на ацетатцеллюлозных пленках. В качестве унифицированного утвержден метод электрофореза на ацетатцеллюлозных пленках.

Метод электрофоретического разделения белков на бумаге и ацетатцеллюлозных пленках

Ацетатцеллюлозная пленка, гель, специальная бумага (носитель) помещается на рамку, при этом противоположные края носителя свисают в кюветы с буферным раствором. На линию старта наносится сыворотка крови. Метод заключается в движении заряженых молекул белка по поверхности носителя под влиянием электрического поля. Молекулы с наибольшим отрицательным зарядом и наименьшим размером, то есть альбумины, двигаются быстрее остальных. Наиболее крупные и нейтральные (γ-глобулины) оказываются последними.

На ход электрофореза влияет подвижность разделяемых веществ, находящаяся в зависимости от ряда факторов: заряд белков, величина электрического поля, состав растворителя (буферной смеси), тип носителя (бумага, пленка, гель).

Количество выделяемых фракций определяется условиями проведения электрофореза. При электрофорезе на бумаге и пленках ацетата целлюлозы в клинико-диагностических лабораториях выделяют 5 фракций (альбумины, α1-, α2-, β- и γ-глобулины), в то время как в полиакриламидном геле — до 20 и более фракций. При использовании более совершенных методов (радиальная иммунодиффузия, иммуноэлектрофорез и других) в составе глобулиновых фракций выявляются многочисленные индивидуальные белки.

На вид протеинограммы оказывают влияние только те белки, концентрация которых достаточно высока.

Фракции белков плазмы. Белок плазмы крови и его фракции

270-271

Ткани и органы. Кровь

Белки плазмы крови

Основную массу растворимых нелетучих веществ плазмы крови образуют белки. Их концентрация лежит в пределах 60-80 г/л; они составляют примерно 4% всех белков организма.

А. Белки плазмы крови

В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α 1 -, α 2 -, β- и γ-глобулины . Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины — только в присутствии солей.

В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов (см. рис. 273), гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови (см. рис. 283); фракция γ-глобулинов содержит антитела иммунной системы (см. рис. 289).

Образование и разрушение. Большинство белков плазмы синтезируется в клетках печени. Исключение составляют иммуноглобулины, которые продуцируются плазматическими клетками иммунной системы (см. рис. 287), и пептидные гормоны, секретируемые клетками эндокринных желез (см. рис. 371).

Кроме альбумина почти все белки плазмы являются гликопротеинами. Они включают олигосахариды, присоединенные к аминокислотным остаткам N- и О-гликозидными связями (см. с. 50). В качестве концевого остатка углеводной цепи часто выступает N-ацетилнейраминовая кислота (сиаловая кислота, см. с. 44). Если эта группа отщепляется нейраминидазой, ферментом находящимся в стенках кровеносных сосудов, на поверхности белка оказываются концевые остатки галактозы. Остатки галактозы асиалогликопротеинов (т. е. десиалированных белков) узнаются и связываются рецепторами галактозы на гепатоцитах. В печени эти «состарившиеся» белки плазмы удаляются путем эндоцитоза. Таким образом, олигосахариды на поверхности белка определяют время жизни белков плазмы, полупериод выведения (биохимический полупериод) которых составляет от нескольких дней до нескольких недель (см. рис. 179).

В здоровом организме концентрация белков плазмы поддерживается на постоянном уровне. Однако их концентрация изменяется при заболевании органов, участвующих в синтезе и катаболизме этих белков. Повреждение тканей посредством цитокинов (см. рис. 379) увеличивает образование белков острой фазы, к которым принадлежат С-реактивный белок, гаптоглобин, фибриноген, компонент С-З комплемента и некоторые другие.

Белки и другие заряженные макромолекулы можно разделять методами электрофореза (см. с. 84). Среди различных электрофоретических методов наиболее простым является электрофорез на носителе , особенно на ацетилцеллюлозной пленке. При этом сывороточные белки, которые из-за наличия избыточного отрицательного заряда движутся к аноду, разделяются на пять вышеупомянутых фракций. После разделения белки можно окрашивать с помощью красителей и денситометрически оценивать количества белков в полученных окрашенных полосах.

При определенных заболеваниях изменяются концентрации отдельных белков (так называемые диспротеинемии ).

Ссылка на основную публикацию
Adblock
detector